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I._ INTRODUCTION

The mechanical properties of composite materials may suffer when the
material is exposed to high temperature, high humidity environments. There-
fore, in order to utilize the full potential of composite materials, their
performance at elevated temperatures and at high moisture contents must be
known. The objective of this investigation was to evaluate the changes in
the ultimate tensile strengths of composite materiais exposed to air in which
the relative humidity varied from 0 to 100 percent and the temperature ranged
from 200 K to 450 K. The changes in the ultimate tensile strengths were
assessed a) by performing tensile tests on Thornel300/Fiberite 1034 graphite
epoxy composites using 0°, /4, and 90° lay-ups and b) by summarizing the

existing data and comparing them to the present results.

II. CONCLUSIONS

On the basis of both the present data and the available existing data (sece
Table III) the following general conclusions may be drawn.

(1) Temperature Effects

a) For 0° and 7C/4 laminates changes in temperature in the range 200 K
to 380 K appear to have negligible effects on the ultimate tensile strength,
regardless of the moisture content of the material. There may be a slight
decrease in strength (<£20%) as the temperature increases from 380 K to 450 K.

b) For 90° laminates the increase in temperature from 200 K to 450 K
causes a significant decrease in the ultimate tensile strength. The decrease
depends both upon the temperature and the moisture content and may be as high

as 60 to 90 percent.




(2) Moisture Effects

a) For 0° and M /4 laminates the moisture content of the composite mat-
erial has only a small effect on the ultimate tensile strength. At moisture
contents (weight gain) below 1 percent, the effects of moisture seem to be
negligible. At moisture contents above 1 percent the tensile strength ap-
pears to decrease with increasing moisture content. The maximum decrease in
the ultimate tensile strength is about 20 percent. This reduction in strength
seems to be insensitive to the temperature of the material.

b) For 90° laminates the moisture content affects significantly the
ultimate tensile strength. The reduction in strength depends both on the
moisture content and on the temperature. The reduction in strength may be
as high as 60 to 90 percent.

c) In all the tests reported here the moisture distribution was not
uniform inside the specimens. For 0° and I /4 specimens differences in mois-
ture distribution did not seem to affect the results. For 90° specimens the
moisture distribution may influence the absolute value of the ultimate ten-
sile strength, but is unlikely to affect the trend in the data.

(3) A 20 to 60 percent scatter in the data is quite common in the tests.
For this reason, and because for some materials the reported data are quite
scarce, the above overall conclusions must be regarded only as generaliza-
tions. For specific conclusions regarding each particular composite material
the relevant tensile test data must be examined.

(4) The above conclusions are based on data obtained in tests where the
loading rate was '"fast'", such that the ultimate tensile strength was reached
in matters of minutes. The interactions between loading rate, temperature,

and moisture content have not yet been investigated.
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LI1.__EXPERIMENTAL

The tensile test data reported in this paper were obtained using 8 ply
T300/1034 specimens with fiberglass tabs attached to the ends of the speci-
mens. The dimensions of the specimens are given in Fig. 1. The specimens
were obtained from 0.66 m x 0.66 m autoclave cured panels. The panels were

fabricated from 30.5 cm (12 in.) prepreg (Fiberite Corp.) using standard |

lay-up and vacuum bagging procedures. The cure cycle used in manufacturing
the panels is given in the Tabile I.

Prior to the tensile tests all the specimens were completely dried at
366 K in a desiccator. The specimens were then placed in environmental cham-
bers (see ref. 1) in which the temperature and the relative humidity were
controlled and kept constant. The 0° and T /4 specimens were '"conditioned"
by placing them in 50, 75, and 100% relative humidity environments and also
by immersing them in water. The temperatures of the environmental chambers
ranged from 300 K to 422 K. A summary of conditions used in preparing these
specimens are listed in Table II. The 90° specimens were all conditioned at
366 K and 100% relative humidity.

The specimens were kept in the environmental chambers until the moisture
content (weight gain) reached the required value. Specimens were tested
with the material fully saturated and also at moisture contents corresponding
to 1/3 and 2/3 of the fully saturated value. In the latter two cases the
moisture distribution was not uniform inside the specimen at the end of the
conditioning period. The moisture distributions in each specimen at the end
of different conditioning periods were calculated from the theory presented
by Shen and Springer [2]. The results of these calculations are shown in
Fig. 2. Some drying of the outer layer occured once the specimenwas removed

from the environmental chamber. This effect will be discussed subsequently.
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Table 1

Autoclave Cure Cycle for T300/1034

Vacuum bag - insert layup into autoclave at room temperature.
Apply full vacuum and contact pressure.

Raise temperature to 250°F at 3°F per minute.

Hold at 250°F for 15 minutes. Apply 100 psi.

Hold at 250°F and 100 psi for 45 minutes.

Raise temperature to 350°F.

Hold at 350°F for 2 hours.

Cool under pressure to below 175°F.




Table I1 Conditions Used in Preparing the 0° and T /4 Specimens

AMBIENT
MOISTURE CONTENT TEMPERATURE, K

300 322 344 366 394 422
Dry X X X X X X
50% rel. humidity* X X X - - -
75% rel. humidity* X X X X - -
100% rel. humidity* X X X X SS SS
Immersed in water* X X X X X X

*

Three different saturation levels were reached at each temperature:
a) specimen fully saturated, b) specimen's moisture content 66% of

full saturation, c) specimen's moisture content 33% of full saturation.

ss denotes saturated steam

ey —t— ———
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Geometry of the Test Specimen

g—— o —

(a)

12.7mm
F, 101mm o }
19mm 0.9mm 1I9mm . |.6mm

----------------

Thornel 300/ Fiberite 1034
Fiberglass Tabs

(b)
f/ 48 mm *
. 12.7mm
S E— ,
101lmm —
0.9mm 19mm _ (6mm

%.,.m,m rrrrrrerrerrrrerrrerrreecfor ey 3 T

a) 0° and /4 lLaminates, b) 90° Laminates.

Figure 1
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When the specimens reached the required moisture content (weight gain)
their ultimate tensile strengths were determined using a 10,000 Ib capacity
Instron machine (Model TTCLM 1-4). For the 0° and W /4 specimens a cross-
head speed of 1.27 mm min°1 (0.05 in/min) was used, while for the 90° speci-
mens a cross-head speed of 12.7 mm min-1 (0.5 in/min) was used. During each
test the specimen was maintained at the desired temperature by a specially
constructed electric oven. For 0° and 7V /4 specimens the oven temperature
was the same as the temperature at which the specimen was conditioned.

As noted above, the 90° specimens were al! conditioned at 366 K.

The oven was about 0.38 m high and 0.23 m in diameter and enclosed completely
the specimen and the grips. The temperature of the specimen was measured by
a copper-constantan thermocouple attached to the surface of the specimen.

The moisture content inside the oven was not controlled and hence some
drying of the outer layer of the specimen occurred during the test. The
duration of each test was about 3 minutes. During this time the specimen
dries. The thickness of the layer affected by the drying (''penetration
depth') and the amount of moisture lost during this drying was calculated by
a numerical solution of Fick's equation [2]. The results of these calcula-
tions are presented in Figs. 3 and 4. Both the penetration depth and the
moisture loss depend on the moisture distribution inside the material (i.e.
on the level of saturation) at the beginning of the drying and on the drying

temperature .
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IV. RESULTS

The data obtained with T300/1034 are presented in Fig. 5. In this fig-
ure each data point represents the average of two tests for the 0° and T /4
specimens and four to ten tests for the 90° specimens. The results show that
for 0° and 1 /4 laminates the ultimate tensile strength is insensitive to
temperatures ranging from 300 K to 380 K regardless of the moisture content
of the material. There appears to be only a slight decrease in strength at
temperatures higher than 380 K. This decrease is, however, within the scat-
ter of the data. For 0° and T/4 laminates the decrease in ultimate tensile
strength due to increase in moisture content is negligible below 1 percent
moisture content. Above 1 percent moisture content the ultimate tensile
strength may decrease as much as 20 percent with increasing moisture con-
tent . For 90° laminates both the temperature and the moisture affect sig-
nificantly the ultimate tensile strength.

It is also noted that for dry 90° specimens a slight increase ( 10%) in
strength was observed when the temperature increased from 300 K to 322 K.
However, this small increase was well within the scatter of the data. Hence,
a definite conclusion regarding such an increase in strength cannot be drawn
from these results. This uncertainty is reflected by the dashed lines in
Fig- 5.

Some tests were also made at 200 K. The results of these tests are not
included in Fig. 5. The data indicate that the ultimate tensile strength
does not change appreciably between 200 K (dry ice temperature) and 300 K
(room temperature). This conclusion seems to be valid for all three fiber

orientations (0°, T/4, and 90°), and for all moisture contents.
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A survey of all existing data showing the effects of moisture and tempera-
ture on the ultimate tensile strength of various composites are presented in
Figs. 6-24. In addition to Figs. 6-24, a brief summary is given in Table Il
of all the data including the type of material tested, the parameters varied,
the general trends in the results and the appropriate references. The survey
given in Figs. 6-24 and Table IIl includes all the data known to the authors
in which the test conditions were either reported explicitly or could be as-
sessed from the data. Those test results where the test conditions were not
properly specified (e.g. '"specimen boiled for 24 hours') were not included
in this survey.

As evidenced from Figs. 6-24, in some cases only a few (2 or 3) data
points were obtained in the tests. In view of the large possible scatter of
the data, caution must be exercised in reaching conclusions on the basis of
such limited data. Nevertheless, with few exceptions, all existing data seem
to follow the trends shown by the present tests on T300/1034.

Figures 5-24 may be used to estimate the reduction in the ultimate ten-
sile strength of various composite materials exposed to humid, high temperature
air. These figures also provide guidelines for future tests. For 0° and /4
laminates few data points appear to be sufficient to establish the trend in
the reduction of ultimate tensile strengths due to changes in temperature
and moisture content. On the other hand, for 90° laminates tests must be
performed at many different conditions to determine the effects of tempera-
ture and moisture content on the ultimate tensile strength. Figures 5-24 also
indicate the conditions where data are lacking, and where further tests are

needed.
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[t is emphasized again that the results presented in this paper only il-
lustrate the trend in the ultimate tensile strength of composite materials
exposed to humid, high temperature environments. The actual value of the
ultimate tensile strength may also depend upon the past history of the mat-
erial, and may be influenced by parameters such as cure cycle, temperature

history (thermal spikes), and loading history.
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